Физика Магнитное поле соленоида Контур с током в неоднородном магнитном поле Сила Лоренца Эффект Холла Магнитные свойства атомов Парамагнетики Классификация магнетиков Основы электронной теории магнетизма

Физика курс лекций

Теория атома водорода по Бору

Постулаты, выдвинутые Бором, позволили рассчитать спектр атома водорода и водородоподобных систем - систем, состоящих из ядра с зарядом Ze и одного электрона (например, ионы Не+, Li2+), а также теоретически вычислить постоянную Ридберга.

Следуя Бору, рассмотрим движение электрона в водородоподобной системе, ограничиваясь круговыми стационарными орбитами. Второй закон Ньютона для электрона с массой me, движущегося со скоростью  по окружности радиуса r под действием кулоновской силы, имеет вид

(11.4)

 

 Решая совместно уравнение (11.4), и уравнение (11.3), получим выражение для радиуса n-й стационарной орбиты:

 (n = 1, 2, 3, …).

(11.5)

 Из выражения (11.5) следует, что радиусы орбит растут пропорционально квадратам целых чисел. Для атома водорода (Z = 1) радиус первой орбиты электрона при n = 1, называемый первым боровским радиусом (rB), равен

(11.6)

Полная энергия электрона в водородоподобной системе складывается из его кинетической энергии и потенциальной энергии в электростатическом поле ядра :

 

[учли, что см.(11.4)]. Учитывая квантованные для радиуса n-й стационарной орбиты значения (11.5), получим, что энергия электрона может принимать только следующие дозволенные дискретные значения:

  (n = 1, 2, 3, …),

(11.7)

где знак « - » означает, что электрон находится в связанном состоянии.

Из формулы (11.7) следует, что энергетические состояния атома образуют последовательность энергетических уровней, изменяющихся в зависимости от значения n. Целое число n в выражении (11.7), определяющее энергетические уровни атома, называется главным квантовым числом. Энергетическое состояние с n = 1 является основным (нормальным) состоянием; состояния с n > 1 являются возбужденными. Энергетический уровень, соответствующий основному состоянию атома, называется основным (нормальным) уровнем; вес остальные уровни являются возбужденными.

Придавая n различные целочисленные значения, получим для атома водорода (Z = 1), согласно формуле (11.7) возможные уровни энергии, схематически представленные на рис. 11.7 и 11.8. Рис. 11.7 иллюстрирует образование спектральных серий в излучении атома водорода при переходе электрона с высоких стационарных орбит на более низкие.  На рис. 11.8 изображена диаграмма энергетических уровней атома водорода и указаны переходы, соответствующие различным спектральным сериям. Энергия атома водорода с увеличением n возрастает и энергетические уровни сближаются к границе, соответствующей значению n = ∞. Атом водорода обладает, таким образом, минимальной энергией (Е1 = = - 13,6 эВ) при п = 1 и максимальной (Е∞ = 0) при n = ∞. Следовательно, значение Е∞ = 0 соответствует ионизации атома (отрыву от него электрона). Согласно второму постулату Бора (см. (11.1)), при переходе атома водорода (Z = 1) из стационарного состояния n в стационарное состояние т с меньшей энергией испускается квант

Рис. 11.7. Стационарные орбиты атома водорода и образование спектральных серий.

(11.8)

Откуда частота излучения

 

(11.9)

 Воспользовавшись при вычислении R современными значениями универсальных постоянных, получим величину, совпадающую с экспериментальным значением постоянной Ридберга в эмпирических формулах для атома водорода.

Прекрасное согласие боровской теории атома водорода с экспериментом служило веским аргументом в пользу ее справедливости. Стало ясно, что атомы – это квантовые системы. Энергетические уровни стационарных состояний атомов дискретны. Представление о дискретных состояниях противоречит классической физике. Поэтому возник вопрос, не опровергает ли квантовая теория законы классической физики. Квантовая физика не отменила фундаментальных классических законов сохранения энергии, импульса, электрического разряда и т. д. Согласно сформулированному Н. Бором принципу соответствия, квантовая физика включает в себя законы классической физики, и при определенных условиях можно обнаружить плавный переход от квантовых представлений к классическим. Это можно видеть на примере энергетического спектра атома водорода (рис. 11.8). При больших квантовых числах n >> 1 дискретные уровни постепенно сближаются, и возникает плавный переход в область непрерывного спектра, характерного для классической физики.

 

Рис. 11.8. Диаграмма энергетических уровней атома водорода. Показаны переходы, соответствующие различным спектральным сериям. Для первых пяти линий серии Бальмера в видимой части спектра указаны длины волн.

Недостатки теории Бора. Попытки применить теорию Бора к более сложным атомам (даже для атома гелия) не увенчались успехом. Эта теория обладает внутренними противоречиями: с одной стороны, применяет законы классической физики, а с другой - основывается на квантовых постулатах. Бор не смог дать физическую интерпретацию правилу квантования. Это было сделано де Бройлем (1923) на основе представлений о волновых свойствах частиц.


Резонансные явления в колебательном контуре