Примеры решения задач по математике Дифференциал функции Исследование функции на экстремум Интегральное исчисление Определенный интеграл Интегрирование по частям Вычисление объемов тел Производная по направлению Кратные интегралы

Правило Лопиталя. 

(Лопиталь (1661-1704) – французский математик)

 К разряду неопределенностей принято относить следующие соотношения:

 

  Теорема (правило Лопиталя). Если функции f(x) и g(x) дифференцируемы в вблизи точки а, непрерывны в точке а, g¢(x) отлична от нуля вблизи а и f(a) = g(a) = 0, то предел отношения функций при х®а равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует.

Пример Вычислить объём тела, образованного вращением вокруг оси ох фигуры, ограниченной линиями

 

  Доказательство. Применив формулу Коши, получим:

где e - точка, находящаяся между а и х. Учитывая, что f(a) = g(a) = 0:

 

  Пусть при х®а отношение  стремится к некоторому пределу. Т.к. точка e лежит между точками а и х, то при х®а получим e®а, а следовательно и отношение  стремится к тому же пределу. Таким образом, можно записать:

.

 

Теорема доказана.

 Пример: Найти предел .

Как видно, при попытке непосредственного вычисления предела получается неопределенность вида . Функции, входящие в числитель и знаменатель дроби удовлетворяют требованиям теоремы Лопиталя.

f¢(x) = 2x + g¢(x) = ex;

 

;

Пример: Найти предел .

;

.

 

  Если при решении примера после применения правила Лопиталя попытка вычислить предел опять приводит к неопределенности, то правило Лопиталя может быть применено второй раз, третий и т.д. пока не будет получен результат. Естественно, это возможно только в том случае, если вновь полученные функции в свою очередь удовлетворяют требованиям теоремы Лопиталя.

 Пример: Найти предел .

 

;

;

 

  Следует отметить, что правило Лопиталя – всего лишь один из способов вычисления пределов. Часто в конкретном примере наряду с правилом Лопиталя может быть использован и какой – либо другой метод (замена переменных, домножение и др.).

  Пример: Найти предел .

 

;

 - опять получилась неопределенность. Применим правило Лопиталя еще раз.

 

;

 - применяем правило Лопиталя еще раз.

 

;

;

 

  Неопределенности вида  можно раскрыть с помощью логарифмирования. Такие неопределенности встречаются при нахождении пределов функций вида , f(x)>0 вблизи точки а при х®а. Для нахождения предела такой функции достаточно найти предел функции lny = g(x)lnf(x).

 

  Пример: Найти предел .

 

Здесь y = xx, lny = xlnx.

Тогда . Следовательно 

 

  Пример: Найти предел .

 

- получили неопределенность. Применяем правило Лопиталя еще раз.

;

Производные и дифференциалы высших порядков Пусть функция f(x)- дифференцируема на некотором интервале. Тогда, дифференцируя ее, получаем первую производную

Исследование функций с помощью производной Возрастание и убывание функций Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f ¢(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].
Геометрические и физические приложения кратных интегралов